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The Du$ng oscillator under external non-Gaussian excitations is investigated
by means of statistical linearization. The input process is modelled as a polynomial
of a Gaussian process or as a renewal-driven impulse process. Four criteria
of statistical linearization are considered. The interarrival times of the renewal
process are distributed according to a Pearson type III law. Predictions of the
stationary variance are compared with Monte Carlo simulations.
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1. INTRODUCTION

Statistical linearization for control systems [1, 2], and equivalent linearization for
mechanical systems [3], have gained much attention since their invention.
Meanwhile, a large number of review papers, e.g., references [4}7], and
a monograph [8] are devoted to this subject. The detailed analysis has been carried
out for systems with parametric and external excitations. For a critical discussion of
these approaches the reader is referred to references [9}11]. As a compromise of
this discussion, in what follows, only statistical linearization is considered.

Since non-Gaussian models arise in many "elds of applied sciences and
engineering [12], the analysis of non-linear dynamical systems under non-Gaussian
excitations and above all the development of the statistical linearization as a fast
and easy to use tool for obtaining the "rst and second order moments of the system
response seems to be of major importance. Unfortunately, only a few articles
consider the statistical linearization under the Poisson excitations.

The objective of this paper is to give a wide study of the application of statistical
linearization to the Du$ng oscillator under continuous and discrete external
non-Gaussian excitations. Four types of external excitations and criteria of
statistical linearization, mean-square errors of displacements and corresponding
potential energies, criterion of equality of the "rst and second moments of
022-460X/00/110019#17 $35.00/0 ( 2000 Academic Press
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non-linear and linearized variables and criterion of equality of the "rst moments of
variables and the corresponding potential energies have been considered. The
analysis of linear systems under external non-Gaussian excitations has been
presented in references [13}15] and in a monograph [12]. Especially, methods for
"nding probabilistic characteristics of the output of linear "lters with continuous
and discrete non-Gaussian inputs have been investigated.

In case of continuous non-Gaussian excitations, two models are used that have
been considered in references [13}16] for linear systems. In references [13, 15] the
non-Gaussian excitations are assumed to be polynomials of Gaussian coloured
noises modelled by linear "lters with Gaussian white-noise excitations. In reference
[14], the non-Gaussian process is expressed as a "nite series. The "rst term is
a Gaussian process with zero mean and unit standard deviation, whereas the higher
order terms provide non-Gaussian corrections such that each successive term is
uncorrelated with all previous terms.

For a Du$ng oscillator under excitation by an impulse process modelled as
a Poisson-driven white noise, the statistical linearization has been considered in
references [17}19]. Moreover, in reference [20], a uni-dimensional system with
a cubic non-linearity and in reference [21] a single-degree-of-freedom oscillator
with Bouc}Wen hysteresis have been investigated by means of statistical
linearization. There are di!erent opinions about the accuracy of the statistical
linearization when applied to impulse-excited systems. The accuracy is judged
positively by Tylikowski and Marowski [17] and Grigoriu [18, 19]. The other
articles also take higher order approximation schemes into account. In reference
[20], the error is about 30%, and in reference [21], the error seems to be even
higher. This discrepancy might be explained by di!erent values for the mean
impulse arrival time.

In case of impulse excitations, it is assumed that the impulse occurrence time is
a Poisson process and a renewal process respectively. For the renewal-driven
impulse process, the interarrival times have the probability density function

p(x)"G
j2x exp(!jx),
0,

x'0,
x)0.

(1)

This is a special case of the Pearson type III (Erlang) probability density function,
which has been used in the past to study tra$c #ow, see references [22, 23]. In
contrast to the exponential probability density function, the Pearson type III
function decreases as the interarrival time tends to zero and approaches the value
zero at the origin. Thus, the probability density function (1) can be regarded as
a model for tra$c conditions, where very small headways become increasingly
improbable. However, according to reference [23], the Poisson impulse model is
acceptable under light tra$c conditions and when the vehicles can overtake freely.

In contrast to the case of external Gaussian excitation, the exact description of
the stationary response of the Du$ng oscillator under non-Gaussian excitation
is unknown. Therefore, the obtained response characteristics are compared
with simulation results in order to validate the linearization techniques under
consideration.
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2. STATISTICAL LINEARIZATION OF THE DUFFING OSCILLATOR

Consider the Du$ng oscillator in its dimensionless form

XG (t)#2fXQ (t)#X (t)#eX3(t)"g(t), (2)

where f and e are constant parameters. The objective of statistical linearization is to
replace the non-linear element /"eX3(t) by the linear form
/
L
"k

0
#k

e
(X(t)!E[X(t)]), k

0
and k

e
are linearization coe$cients, such that

a certain equivalence criterion is satis"ed. Then, the linearized system has the form

XG (t)#2fXQ (t)#u2
e
X(t)#e

e
"g (t), (3)

where u2
e
"1#k

e
and e

e
"k

0
!k

e
E[X(t)]. The following four equivalence

criteria are considered:

1. Criterion of equality of the "rst and second moments of non-linear and
linearized variables [1],

ekE[X3k(t)]"E[(/
L
(t))k] for k"1, 2. (4)

2. Minimization of the mean-square error of approximation [1, 2],

E[(/
L
(t)!eX3(t))2]. (5)

3. Criterion of equality of "rst moments of variables and the corresponding
potential energies,

eE[X3(t)]"E[(/
L
(t))],

eECP
X(t)

0

m3dmD"ECP
X(t)

0

/(t)
L

dmD. (6)

4. Minimization of the mean-square di!erence of the potential energies [25],

ECAP
X(t)

0

(/
L
(t)!em3) dmB

2

D (7)

5. Criterion of equality of the "rst second moments of potential energies of
non-linear and linearized variables,

ECAP
X(t)

0

em3dmB
k

D"ECAP
X(t)

0

/(t)
L

dmB
2

D for k"1, 2. (8)

For the "rst criterion, the linearization coe$cients are

k
01
"eE[X3(t)],

k
e1
"eS

E[X6(t)]!(E[X3(t)])2
E[X2(t)]!(E[X(t)])2

(9)

for the second criterion,

k
02
"eE[X3(t)],

k
e2
"e

E[X4(t)]!E[X3(t)]E[X (t)]
E[X2(t)]!(E[X(t)])2

(10)
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for the third criterion,

k
03
"eE[X3(t)],

k
e3
"e

E[X4(t)]!4E[X3(t)]E[X (t)]
2E[X2(t)]!4(E[X(t)])2

(11)

for the fourth criterion,

k
04
"

e
M

(E[X2(t))E[X5(t)](1
2
E[X4(t)]!E[X(t)]E[X3(t)])

#

e
M

(E[X2(t)]E[X6(t)](E[X2(t)]E[X (t)]!1
2
E[X3(t)]),

k
e4
"

e
M

(E[X6(t)]E[X2(t)]!E[X5(t)]E[X3(t)])E[X2(t)]),

M"2E[X2(t)](E[X2(t)]E[X4(t)]!(E[X3(t)])2). (12)

and for the "fth criterion,

k
05
"

e
4E[X(t)]

(E[X4(t)]!2k
e5

E[X2(t)])#k
e5

E[X(t)],

k
e5
"e

!B
5
#JB2

5
!4A

5
C

5
2A

5

,

A
5
"4(E[X4(t)](E[X(t)])2#(E[X2(t)])3!2E[X3(t)]E[X2(t)]E[X(t)]),

B
5
"4(E[X4(t)]E[X3(t)]E[X(t)]!E[X4(t)](E[X2(t)])2),

C
5
"(E[X4(t)])2E[X2(t)]!E[X8(t)](E[X(t)])2. (13)

If the stochastic process g (t) has vanishing odd moments, the corresponding odd
moments of the response are equal to zero. In this case,

k
0i
"0 for i"1, 2, 3, 4,

k
05
"

e
4(E[X2(t)])2

JE[X8(t)](E[X2(t)])3!(E[X4(t)])3E[X2(t)], (14)

k
e1
"eS

E[X6(t)]
E[X2(t)]

, k
e2
"e

E[X4(t)]
E[X2(t)]

, k
e3
"k

e5
"e

E[X4(t)]
2E[X2(t)]

,

k
e4
"e

E[X6(t)]
2E[X4(t)]

. (15)

Generally, the moments that are needed for the calculation of the linearization
coe$cients are unknown. Therefore, we approximate them by the corresponding
moments of the linearized system.
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In this case, the following algorithm for the determination of the linearized
system can be formulated:

1. Guess initial values for k
0i
, k

ei
, i"1, 2, 3, 4, and E[X]; for instance,

k
0i
"k

ei
"E[X]"0, i"1, 2, 3, 4.

2. Calculate E[Xk] for k"1, 2, 3, 6 in case of "rst criterion, for k"1, 2, 3, 4 in case
of the second criterion, for k"1, 2, 3, 4 in the case of the third criterion and for
k"1,2, 6 in the case of the fourth criterion for the linear system (3).

3. Calculate coe$cients k
01

and k
e1

from equation (9) in case of the "rst criterion,
k
02

and k
e2

from equation (10) in case of the second criterion, k
03

and k
e3

from
equation (11) in case of the third criterion and k

04
and k

e4
from equation (12) in

the case of the fourth criterion.
4. Go back to step 2 and iterate until convergence.

Thus, the whole problem consists in the determination of the moments E[Xk],
k"1,2, 6, for the linear system (3). This is done in the next section. As we only
want to compare predictions for the variance of the stationary state, we limit
ourselves to the stationary moments.

We note that for k"5, the mean value of the response will not be equal to zero,
even if the excitation is a zero mean process, and therefore the last equations in
equations (14) and (15) cannot be used. Hence, it follows that the "fth linearization
coe$cients can be used only in the case for non-zero response systems what
signi"cantly reduces its applicability.

3. CALCULATION OF THE STATIONARY MOMENTS FOR THE
LINEAR SYSTEM

For the two types of excitation, we consider separately methods to obtain
stationary moments of the linear system.

3.1. CONTINUOUS NON-GAUSSIAN EXCITATIONS

For convenience, equation (3) is rewritten as the "rst order system

dX
1
(t)"X

2
(t) dt,

dX
2
(t)"[!u2

e
X

1
(t)!2fX

2
(t)!e

1
#g (t)] dt (16)

and it is assumed that the stochastic process g(t) is non-Gaussian and can be
represented by a polynomial form of a normal "ltered process described by

g (t)"
M
+
i/1

a
i
>i(t) (17)

and

d>(t)"!a>(t) dt#q dm(t), (18)

where a, a
i
, (i"1,2, M) and q are constant parameters,>(t) is a uni- dimensional

coloured Gaussian process, and m(t) a standard Wiener process. The moment
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equations corresponding to the linearized system (16)}(18) have the form

dE[Xp
1
1
Xp

2
2
]

dt
"p

1
E[Xp

1
!1

1
Xp

2
#1

2
]!u2

e
p
2
E[Xp

1
#1

1
Xp

2~1
2

]

!2fp
2
E[Xp

1
1
Xp

2
2
]!e

1
p
2
E[Xp

1
1
Xp

2
!1

2
]#

M
+
i/1

a
i
E[Xp

1
1
Xp

2
!1

2
> i]

(19)

for p
1
, p

2
"0,1,2, p, p

1
#p

2
"p, p"1, 2,2, N

p
,

dE[Xp
1
1
Xp

2
!1

2
>i]

dt
"p

1
E[Xp

1
!1

1
Xp

2
2
>i]!u2

e
(p

2
!1)E[Xp

1
#1

1
Xp

2
!2

2
>i]

!2f(p
2
!1)E[Xp

1
1
Xp

2
!1

2
>i]!e

1
(p

2
!1)E[Xp

1
1
Xp

2
!2

2
>i]

#(p
2
!1)

M
+
j/1

a
j
E[Xp

1
1
Xp

2
!2

2
>i`j]

#aiE[Xp
1
1
Xp

2
!1

2
>i]#1

2
i(i!1)q2E[Xp

1
1
Xp

2
!1

2
>i~2] (20)

for p
1
, p

2
!1"0, 1,2, p!1, p

1
#p

2
"p, p"1,2,N

p
!1, and

dE[> i]
dt

"!aiE[> i]#1
2
i (i!1)q2E[>i~2] (21)

for i"1,2, MN
p
.

The number of equations is equal to N
p
(N

p
#3)/2#M[N

p
#2(N

p
!1)

#2#(N
p
!1)2#N

p
]. For example, if M"3 and N

p
"6, we obtain 195

equations. We note that although system (16)}(18) is non-linear the moment
equations (19)}(21) are in exact closed form and no closure technique has to be
applied. Another representation of continuous stationary non-Gaussian processes
was proposed by Iyengar and Jaiswal [14], namely

g (t)"
M
+
i/0

a
i
t

i
(t), (22)

where a
i
are constant parameters, t

0
(t)"1, and t

1
(t)"m(t) is a Gaussian process

with zero mean and unit standard deviation. The remaining functions t
i
(t) are

selected as normalized Hermitian polynomials in m (t):

t
i
(t)"

(!1)i

Ji!
expA

m2

2 B
di

dmi
expA!

m2

2 B , i"1, 2,2 . (23)

The probabilistic characteristics of the process g(t) are given in reference [14]. As
an example of the process m (t), Iyengar and Jaiswal propose

m(t)"R cos(ut!h), (24)

where u is a constant parameter (frequency), R and h are Rayleigh and uniformly
distributed random variables, respectively; i.e., the probability density function
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gm(R, h) has the form

gm (R, h)"g
1
(R)g

2
(h), (25)

where

g
1
(R)"G

R expA!
R2

2 B
0,

R'0,

R)0
(26)

g
2
(h)"G

1
2n
0

for h3[0, 2n],

otherwise.
(27)

If M"3 and a
0
"!e

1
, we obtain

g (t)"!e
1
#a

1
R cos(ut!h)#

a
2

J2
(R2 cos2 (ut!h)!1)

#

a
3

J6
(R3 cos3 (ut!h)!3R cos(ut!h))

"a
0
#

M
+
i/1

a
i
cos(i(ut!h)), (28)

where a
0
"!e

1
!(1/J2) a

2
, a

1
"a

1
R#(3a

3
R/J6) (R2/4!1), a

2
"(1/J2)a

2
R2,

a
3
"(1/4J6) a

3
R3.

The stationary solution of equation (16) for g (t) given by equation (28) has the
form

X
1
(t)"

1
u2

e
Cc0#

3
+
i/1

c
i
cos(i(ut!h!d

i
))D, (29)

where

c
0
"a

0
, c

i
"H(u

e
, iu)~1a

i
,

d
i
"

1
i
arctan

2fiu
u2

e
!(iu)2

(30)

for i"1, 2, 3, and

H(u
e
, u)"CA1!

u2

u2
e
B
2
#A

2fu
u2

e
B
2

D
1@2

. (31)

Hence, one can calculate numerically the response statistics. The stationary
moments are

E[Xp
1
]" lim

t?=

[E(Xp
1
(t)]"lim

t?=
P

`=

~=
P

2n

0

Xp
1
(R, h, t)g(R, h) dRdh (32)

for p"1, 2,2 .
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As an example, we consider the special case that the input process g (t) has zero
mean, i.e., that a

2
"0. Then, the mean value of the solution of equation (16) is also

equal to zero and the linearized system has the form

dX
1
(t)"X

2
(t) dt,

dX
2
(t)"[!u2

e
X

1
(t)!2fX

2
(t)] dt#[a

1
t
1
(t)#a

3
t

3
(t)] dt (33)

or

dX
1
(t)"X

2
(t) dt

dX
2
(t)"[!u2

e
X

1
(t)!2fX

2
(t)] dt#[a

1
cos(ut!h)#a

3
cos(3(ut!h))] dt.

(34)

Hence, the solution becomes

X
1
(t)"

1
u2

e
C
a
1
cos(ut!h!d

1
)

H(u
e
, u)

#

a
3
cos(3(ut!h!d

3
))

H (u
e
, 3u) D , (35)

where d
1
"arctan 2fu/(u2

e
!u2), d

3
"1

3
arctan 6fu/(u2

s
!9u2). We note that

u2
e

and H(u
e
, u) depend on the linearization coe$cients, i.e., u2

e
"1#k

ei
for

i"1, 2. The stationary moments can be obtained from equation (32), where
X

1
(R, h, t) and g (R, h) are given by equations (35) and (25), (27).

3.2. IMPULSE EXCITATION

It is well known that the impulse response function for equation (3) with e
e
"0 is

given by

h (t)"
1
u

exp (!ft) sin(u6 t), (36)

where u6 "Ju2
e
!f2. Consider the case that g(t) is a Poisson-driven impulse

process

g(t)"
N(t)
+
i/1

>
i
d(t!t

i
), (37)

where N(t) is a Poisson counting process with intensity j and the random
amplitudes >

i
are independent and identically distributed [26]. Furthermore, let

E[>]"0, such that the excitation process g(t) has zero mean.
A time-domain approach [27] leads to the stationary cumulants of the linear

system

k
i
"jE[> i] P

=

0

hi (q) dq, i"1, 2,2 . (38)

Especially, one obtains

k
1
"

jE[>]
u2

e

, k
2
"

jE[>2]
4fu2

e

, k
3
"

2jE[>3]
3(u2

e
#8f2)u2

e

(39)
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and

k
4
"

3jE[>4]
32(u2

e
#3f2)fu2

e

. (40)

The stationary moments can be calculated from the relations between cumulants
and moments [28]. We "nd that

E[X2
1
]"k

2
#k2

1
, E[X3

1
]"k

3
,

and
E[X4

1
]"k

4
#3k2

2
. (41)

For the more general case of renewal-driven impulses, a time-domain approach is
due to reference [29] and has been extended in reference [23]. However, for the
determination of higher order moments, this approach leads to cumbersome
integrations. Therefore, we follow here a state-space approach that has been
developed in reference [24] and further extended in reference [30]. The idea is to
augment the dynamical system by suitable transformations of a Poisson counting
process, such that the whole system is driven by the compound Poisson process.
For the linear system (3), with e

e
"0, excited by a renewal-driven impulse process

with a probability density function of the interarrival times given by equation (1),
the augmented dynamical system reads

dX
1
(t)"X

2
(t) dt,

dX
2
(t)"!(u2

e
X

1
(t)#2fX

2
(t)) dt#

1
2

(1#C(t)) P
y

yM (t, dt, y, dy),

dC(t)"!2C(t) P
y

M(t, dt, y, dy), (42)

where M(t, dt, y, dy) is the Poisson measure corresponding to an impulse process
driven by the Poisson counting process N(t) and the additional variable C (t) is
equal to (!1)N(t)`1. The corresponding Ito( formula is

d/"

L/
LX

1

X
2
dt!

L/
LX

2

(u2
e
X

1
#2fX

2
) dt

#P
y

(/(X
1
, X

2
#

1
2
(1#C)y,!C)!/(X

1
, X

2
, C))M(t, dt, y, dy). (43)

Inserting /"Xj
1
Xk

2
Ci into this equation, and averaging, one arrives at

d
dt

E[Xj
1
Xk

2
Cl]"jE[Xj~1

1
Xk`1

2
Cl]!k(u2

e
E[Xj`1

1
Xk~1

2
Cl]#2fE[Xj

1
Xk

2
Cl]

#j ((!1)l
k
+

k
1
"0A

k
k
1
B

1
2k

1
E[Xj

1
Xk~1

2
(1#C)k1Cl]E[>k

1
]

!E[Xj
1
Xk

2
Cl]). (44)

In the stationary case, the right-hand side of this equation constitutes a linear
system of equations for the moments of the same order. Note, however, that the



Figure 1. Comparison of E[X4
1
] for the linear system excited by the Poisson and a renewal driven

impulse process, resp. u
e
"1, f"0)05, h"J12/Jj : #, Poisson pulses; ], Renewal driven pulses.
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equation for j"k"0 and lO0 is trivial: for l odd, one obtains E[Cl(t)]"0, and
for l even, it is easy to show that E[Cl(t)]"1. With this information, the system of
linear equations may be solved to yield the stationary moments for the evaluation
of equations (9)}(12).

Figure 1 compares the stationary fourth order moment of the response of the
linear system under the Poisson and renewal-driven impulse excitation. The
intensity of the Poisson counting process was j/2, while the intensity of the renewal
process was j. The amplitudes of the impulse process were uniformly distributed on
the interval (!h/2, h/2). The second moment of the excitation was kept constant,
while j was changed. From Figure 1, one observes that even for small values of j,
the stationary fourth order moment is the same as for a Gaussian excitation
(jPR).

4. RESULTS

To illustrate the obtained results, a comparison of mean-square displacements
E[X2

1
] for four criteria of statistical linearization and two representations of

non-Gaussian continuous external excitations is shown. In Figure 2, these
characteristics are presented for system (16)}(18), while in Figure 3, the comparison
is given for system (16), (22). The notation SI, !i, i"1,2, 4, in the key of the
"gures refers to the four linearization criteria.

In the simulation of the response of the Du$ng oscillator with excitations
represented by a polynomial form of a normal "ltered process, the sample functions
of Gaussian white noise are modelled by piecewise constant functions with
a sample interval Dt"0)005. The equations of motion are solved using a fourth



Figure 2. Prediction of E[X2
1
] for the Du$ng oscillator under continuous non-Gaussian external

excitation. Equations (17) and (18) with a
1
"0)25 a

2
"0)25, a

3
"0)25, a"1, q2"0)1 (a) f"0)05, (b)

e"1: ], SL-1; *, SL-2; h, SL-3; j, SL-4; *L*, Simulation.
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order Runge}Kutta scheme with a time step equal to 0)0002 in the interval [0, 200].
The transient solutions of equation (2) are discarded to ensure that the sample
functions of solution is from a stationary process. For each set of parameters, 1000
sample functions of the response are obtained and for each sample function only
the last 50 points from a total of 40 000 retained as the stationary response. Next, to
calculate the estimation of mean-square displacement, they were divided into 50
batches of 1000 random points.

Figures 2(a) and (b) show that there are no signi"cant di!erences between
considered criteria and simulation results. However, with increasing values for e the
approximation error increases and the mean square criteria for variables and their
potential energies yield better approximations than the criterion of equality of the



Figure 3. Prediction of E[X2
1
] for the Du$ng oscillator under continuous non-Gaussian external
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"rst and second moments of non-linear and linearized variables and the criterion of
equality of the "rst moments of variables and potential energies. Figures 3(a) and
3(b) show that the corresponding di!erences are signi"cant in the case of excitations
represented by a sum of harmonics with random amplitudes and phases. Also in
this case the mean-square criteria yield better approximations than the other ones.

For the Du$ng oscillator under impulse excitation, Monte Carlo simulations
were carried out using a method that was suggested by Tylikowski and Marowski
[17]. Between two subsequent impulses, the di!erential equation without the
excitation term is integrated using a numerical method for initial value problems.
Once arrived at an impulse occurrence time, the value for the velocity has been
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driven impulse process, resp. Gaussian amplitudes. f"0)05, e"1: #, SL-2 the Poisson pulses; ],
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changed by adding the impulse amplitude. The impulse occurrence times were
obtained from simulations of the interarrival times. For the amplitudes, normally
and uniformly distributed random variables were considered. In all cases, 50 000
samples have been calculated and con"dence intervals for the estimation of E[X2

1
]

were obtained from 50 batches of 1000 samples with a con"dence level of 95%.
Figures 4 and 5 summarize the results for excitation by Gaussian amplitudes

with zero mean and standard deviation p"1/Jj . The intensity of the renewal
process was j, while for the Poisson process, it was j/2.

Figure 4 shows that only for very small values of j, the obtained results di!er
signi"cantly from the results obtained by Gaussian white noise excitation. In this
case, the approximation properties of the di!erent statistical linearization
technique change: the mean-square criterion SL-2 yields now better approximat-
ions than the energy-based minimization criterion SL-4. More importantly, the
newly introduced criterion SL-3 gives very sharp upper bounds for the stationary
second order moment of displacement. As Figures 5(a) and 5(b) indicate, this holds
for a wide range of the non-linearity and the damping parameter.

5. CONCLUSIONS

In this paper, the statistical linearization of the Du$ng oscillator under
continuous non-Gaussian external excitation has been studied. Four criteria of
statistical linearization, the criterion of equality of the "rst and second moments
of non-linear and linearized variables, the minimization of the mean-square error of
displacement, the criterion of equality of the "rst moments of variables and
corresponding potential energies and minimization of the mean square di!erence of
potential energies of non-linear and linearized variables have been considered.

In the "rst part of this paper the non-Gaussian excitations were assumed to be
continuous. They were modelled by two representations, namely by a polynomial
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form of a normal "ltered process (PF) and by a sum of harmonics with random
amplitudes and phases (SH). Numerical studies show that for the second order
moments of the displacement for the given set of parameters, conclusions are
di!erent for every representation of non-Gaussian excitations. In the case of (PF)
approximation there are small di!erences between considered criteria and
simulation results, while for (SH) approximation they are signi"cant. In the case of
(SH) approximation an unexpected result can be observed, namely if f tends to zero
the mean-square displacement does not increase asymptotically as it takes place as
well for (PF) approximation as for Gaussian excitations.
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For these two reasons the representation by a polynomial form of a normal
"ltered process seems to be better than the representation by a sum of harmonics
with random amplitudes and phases.

In the second part of this paper, the statistical linearization of the Du$ng
oscillator under external excitation by a Poisson-driven impulse process and
a renewal-driven impulse process has been studied. For very small intensities of the
counting process, the approximation error tended to increase. Except for the third
linearization criterion, all criteria were underestimating the stationary second
moment. This fact was also observed in the case of continuous non-Gaussian
excitations.

It has been found that the statistical linearization of the Du$ng oscillator under
renewal driven excitation could be approximated by the statistical linearization of
the same oscillator under the Poisson}driven excitation where the intensity of the
Poisson counting process was half of the intensity of the renewal-driven process
under consideration. Moreover, for j'0)2, the statistical linearization procedure
can also be carried out with a Gaussian white-noise excitation without a signi"cant
loss of accuracy.

We note that the second linearization technique would yield the exact "rst and
second order moments, if the expectations for the evaluation of the linearization
coe$cients were replaced by the corresponding expectations with respect to the
response of the non-linear system. This fact follows as well for continuous
excitation in polynomial form as for impulsive non-Gaussian excitation from
equations (19)}(21) and (44) respectively.
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